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Abstract

We propose a simple modification of the convolutional layer by rectifying the
feature-map activations, which alleviates the biases introduced via zero-padding.
We refer to this modified version of convolution as rectified convolution. Comparing
to standard convolutional layer, the rectified version almost introduces no extra
computation cost or memory usage. Simply replacing the convolutional layer with
the rectified version, the performances of CNNs are consistently improved, for
example the top-1 accuracy of ResNet-50 on ImageNet is increased from 76.5% to
77.1%.

1 Introduction

Convolutional neural network (CNN) has become the pre-dominant method in computer vision. CNN
learns the feature representation directly from the data by stacking the convolutional layers with
non-linearities and downsampling. There are a lot of research study on non-linearity functions and
regularization methods, but the convolutional layer has stayed almost unchanged since LeNet [4]. In
this paper, we rethinking the boundary padding for convolutional layers.

Modern CNN architectures often follow a modular design which stacks multiple blocks in the same
type at each stage [7, 2]. To preserve the same spatial resolution at each stage, zero-padding is used
for convolutional layers. However, the input feature-map is often ReLU activated with a non-zero
mean. As convolutional layers act in a sliding window manner, the resulting activations along the
feature-map boundaries have padded zeros as the input, which makes it hard to estimate the batch
statistics reliably using Batch Normalization. In addition, the ratio between the boundary pixels
and the interior pixels change with the input size, which may lead to discrepancy in the feature
representation using different training and validation image resolutions [9].

For the image-to-image problem, the generative model often employs reflection-padding to alleviates
the artifacts along the boundaries due to the padding [11]. Despite its success in generative model, the
reflection-padding is not suitable for image classification network due to introducing aliasing artifacts.
A question naturally arises what is the idea padding value along the feature-map boundaries?
Dropout [8] randomly masks out ratio p of the activations in the feature-map, and scales up the
remaining activations by 1

1−p during the training. And it serves as an identity layer during the
inference to form a in-network ensemble of various modes during the training. Inspired by the
dropout work, we treat the padded zeros as the missing pixels just like being masked out along the
boundaries.

As the main contribution of this paper, we introduce a rectified convolution, where the boundary values
are rectified to alleviates the biases introduced by zero-padding. We simply scale up the activation
by a ratio of kernel_size

valid_pixels to compensate the padded zeros, so that the expectation of the resulting
feature-map mean is consistent across spatial locations. Experimental results have shown that the
proposed rectified convolution can improve the classification accuracy on ImageNet [1] consistently
for different CNN architectures. We have also studied the behavior of using average aggregation
mode instead of summation in the convolutional layers, and have achieved similar performance. It
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Figure 1: Comparing to the standard 2D convolution with zero-padding, rectified convolution only
takes the valid input values and scale up the activations based on number of valid input elements. The
kernel size is 3× 3 and feature-map size is 7× 7.

demonstrates that the discrepancies are mainly caused by unbalanced valid pixel ratio instead of
aggregation mechanism. This modification is simple and can be easily implemented as an in-place
operator using deep learning toolkit 1, with almost no extra computation cost or memory usage.

2 Methods

In this section, we use 2D convolution as an example to describe how rectified convolution works.
The convolutional layer can be regarded as a 2D convolution if it has stride of 1 and a single input
and output channel.

2.1 2D Convolution with Zero-padding

For a zero-padded 2D convolution with an input feature-map x ∈ RH×W and kernel k ∈ Rm×n, the
value of the output feature-map y ∈ RH×W at the location [h,w] can be represented as:

y[h,w] =

m∑
i=1

n∑
j=1

k[i, j] · x̂[h− i, w − j], (1)

where x̂[h,w] is the input pixel value at the location [h,w] or padded zero:

x̂[h,w] =

{
x[h,w] if δ(x[h,w])
0, otherwise,

(2)

where δ() is an indicator function which indicates whether the pixel is valid (inside the input feature-
map):

δ(x[h,w]) = (0 ≤ h ≤ H) ∧ (0 ≤ w ≤W ). (3)

Boundary Effects and Feature Discrepancy. The convolution operation acts in a sliding window
manner. The number of valid input pixels inside the convolutional kernel depends on the pixel
location of the input, as shown in Figure 1. The input feature-map of convolutional layer in modern
CNN is usually ReLU activated and has a non-zero mean. The activations along the feature-map
boundaries are biased due to zero padding. In addition, the ratio of non-biased activations varies with

1PyTorch implementation will be released upon publication.
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Network Rectified acc%

ResNet-50 [2] 76.48
X 77.10 (+0.62)

ResNet-101 [2] 78.13
X 78.74 (+0.41)

ResNeXt-50 [10] 78.17
X 78.48 (+0.31)

RegNetX-4GF [6] 79.03
X 79.35 (+0.33)

ResNeSt-50† [12] 78.73
X 79.38 (+0.65)

Table 1: Image classification results on ImageNet. Rectified convolution consistently improves
the performance for different CNN architectures. (ResNeSt-50† is using 2s8x fast setting with
4.5GFLOPs and 26.4M params.)

different input sizes. For example 36 pixels are non-biased for input feature-map size of 7× 7 using
a 3× 3 convolution kernel and resulting in a valid ratio of 36/49 = 0.735, while the valid ratio for
6× 6 is 0.694.

Batch normalization [3] is often used as a regularization after the convolutional layer in CNNs. The
accumulation of batch statistics becomes difficult to establish due to the biased activations along the
boundaries. Furthermore, the estimated batch statistics is conditional on the input resolution change,
leading to the discrepancy in the learned network representation.

2.2 Rectified Convolution

To tackle the difficulty of inconsistent number of valid input pixels along the feature-map boundaries,
we simply scale up the resulting activation:

y[h,w] =
mn

v[h,w]

m∑
i=1

n∑
j=1

k[i, j] · x̂[h− i, w − j], (4)

where v[h,w] is the number of valid pixels residing inside the feature-map for the pixel location at
h,w:

v[h,w] =

m∑
i=1

n∑
j=1

1[(0 ≤ h− i ≤ H) ∧ (0 ≤ w − j ≤W )]. (5)

3 Experimental Results

In this section, we first compare the image classification performance if different CNN architectures [2,
10, 12, 6] using rectified convolution and standard 2D convolution with zero-padding on ImageNet
dataset [1], then study the different aggregation mode in the rectified convolution.

Implementation Detail For easily measure the improvement of rectified convolution, we train
different network architectures in the same setting. We use data parallel training on 8 GPUs with
data sharding, where the mini-batch on each GPU is sampled from the corresponding shard without
replacement. For data augmentation, only standard transformations are used, including random size
cropping between 0.08 to 1.0 of the original image area, random horizontal flip, color jittering and
lighting changes. After jittering, the image is subtracted by RGB mean and divided by the standard
deviation before fed into the network. Batch Normalization [3] and ReLU activation function [5]
are used after each convolutional layer. A mini-batch size of 512 is used with 64 image samples per
GPU. We use a learning rate of 0.2 and a weight decay of 0.0001. No regularization method is used
except for weight decay. The networks are trained on the ImageNet training set for 120 epochs with a
cosine learning rate decay and evaluated on the validation set.
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Network Rectified acc%

ResNet-50 [2] sum 77.10
avg 77.11

Table 2: Sum aggregation v.s. average aggregation. Image classification results on ImageNet.

Rectified Convolution We evaluate the performance of difference CNN models using rectified
convolution or standard convolution with zero-padding, including ResNet [2], ResNeXt [10],
ResNeSt [12] and RegNet [6]. The image classification top-1 accuracy on ImageNet [1] valida-
tion set is reported in Table 1. We can see that the performances of these networks are boosted by
0.3− 0.6% on top-1 accuracy.

Sum mode v.s. Average Mode Since rectified convolution mainly balances the activation scale
regardless of the number of valid input elements, it is naturally to consider using average mode to
aggregate the convolution instead of summation. In this way, it is the same as averaging the responses
only on the valid input elements:

y[h,w] =
1

v[h,w]

m∑
i=1

n∑
j=1

k[i, j] · x̂[h− i, w − j], (6)

v[h,w] is the count of valid input at output location h,w as in Equation 4. We compare the per-
formance of ResNet-50 on ImageNet, and the results are shown in Table 2. We get very similar
performance using different aggregation mode, which demonstrates that the biases are main introduced
by inconsistent valid input elements between boundary and interior pixels instead of aggregation
mode.

4 Conclusion

In this paper, we propose a simple modification of standard convolutional layer with zero-padding
by rectifying the activations with padded zero input along the boundaries. We refer to this modified
version as rectified convolution. The modification is simple yet efficient, and consistently improves
the performance of CNNs without introducing extra computation or memory usage. As the rectified
convolution alleviates the aliasing along the feature-map boundaries, we expect it could be beneficial
to generative models or segmentation CNNs.

References
[1] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale

Hierarchical Image Database. In: CVPR09 (2009)

[2] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385 (2015)

[3] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In: International Conference on Machine Learning. pp. 448–456 (2015)

[4] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

[5] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In:
Proceedings of the 27th international conference on machine learning (ICML-10). pp. 807–814
(2010)

[6] Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design
spaces. arXiv preprint arXiv:2003.13678 (2020)

[7] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556 (2014)

4



[8] Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple
way to prevent neural networks from overfitting. Journal of machine learning research 15(1),
1929–1958 (2014)

[9] Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy. In:
Advances in Neural Information Processing Systems. pp. 8250–8260 (2019)

[10] Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep
neural networks. arXiv preprint arXiv:1611.05431 (2016)

[11] Zhang, H., Dana, K.: Multi-style generative network for real-time transfer. arXiv preprint
arXiv:1703.06953 (2017)

[12] Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H., Sun, Y., He, T., Muller, J., Manmatha,
R., Li, M., Smola, A.: Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955
(2020)

5


	Introduction
	Methods
	2D Convolution with Zero-padding
	Rectified Convolution

	Experimental Results
	Conclusion

