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Deeper and larger SOTA models
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Observations

> 1o launch a training job with multiple
machines:
> Wait for all resources to be ready
> Reserve in advance
> Stop other low-priority jobs

Amazon EC2 > Caﬂ We.

> Start early with partial resources

> Preempt partial resources for low-priority
jobs instead of stopping them

> Increase the utilization and reduce the
cost
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Amazon EC2 Spot Instances

> Spot Instance up to 90% off compared to
On-Demand instance.

neural networks?

> Existing Solution: checkpoint and resuming
(fixed resource)

Amazon EC2 > Can we dynamically use available spot
Spot Instances instances?

N 4 i
{ I:r— \ > Can we use Spot Instance to train deep

Similarly, Google Cloud offers preemptible virtual machine and Microsoft Azure has low-priority virtual machines.
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The Dynamic Env: Elastic Distributed Training
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Can we use Spot
Instance to train deep
neural networks? (w/o
sacrificing the model
performance)
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Data Parallelism in Deep Learning System

Parameter Server
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Model is replicated

A mini-batch of data is
distributed

Gradients are calculated
on each worker

Average the gradients and
update parameters

System Latency
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A “Simple” Solution for Elastic Training, Fix Mini-
batch Size

> Advantage:

« Not changing the optimization process using SGD
> Difficulty:

« Main Communication overhead (communication vs.
computation)
Method Scale | Throughput

Static Baseline 1x 4944
Fixed Mini-batch Size | 12X 335
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Fix Per-work Batch Size

> Advantage:
« Scalable with good speedup (computation>communication)
> Difficulty:

« Model convergence using momentum SGD
 Guide for adapting the learning rate
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Mini-batch SGD

> SGD:
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Scaling LR with Mini-batch Size

> Fix number of epochs, and
increase mini-batch size from B

to kB niil ;- cradent
. . . Cost )
> Assuming gradient is smooth (up \
. Incremental /
to k*): ¢(wy, x) =~ £(weyj,x) for j <k Step ﬁ
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Related Work tor Large Mini-batch Training

> Linearly Scaling the Learning Rate (Overshooting)
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(a) Increase the mini-batch size to 12 times at epoch 20.
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SGD with Momentum Update

> Momentum SGD:
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Skiing Analogy
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> Red: Advanced
Skier

» Blue: Beginning
Skier
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Ditficulty of Momentum Update in Elastic
Training
> Momentum SGD:

mm  History w Small Mini-batch Large Mini-batch

B
1
Upsr1 = MUy + 3 ;Vl(wt,xi)

W41 = Wt — NUt4-1,
> Noise (Variance) in the
Gradient and Momentum:

1
> Top K —
kB X 15
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Solution: Dynamic SGD

> Momentum Compensation (Warmup)
Smooth adaptation of the momentum state

W1 = W — V¢ 1MNUs+1, Where ¢ 1 18:

T

t—1
1+ —2(k—1) if(t—to)<T
Tt =
k otherwise
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Stabilize the Training Using Our Method
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Results: Top-1 Accuracy on ImageNet
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Take-home Message:

> Elastic Distributed Training

» Dynamic SGD to Enable Elastic
Training:

> Experiments on Classification,

Detection and Segmentation

> Extra Thoughts:

» Dynamic Scheduling for DL
System
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AWS System Implementation

> Prototype Available:

https://github.com/awslabs/dynamic-training-with-
apache-mxnet-on-aws

> SageMaker Integration in Progress
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https://github.com/awslabs/dynamic-training-with-apache-mxnet-on-aws

Thank you!
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